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Non-Newtonian secretion flow in tubes 
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A model is developed for the phenomenon of non-Newtonian secretion in tubes. 
The motivation for this study is the problem of glandular secretion, particularly 
in the pancreas. Power-law fluids are considered in some detail, as being bio- 
logically appropriate. It is found that for a power-law fluid whose exponent is 
less than unity (the biological case) two types of flow occur. For a sufficiently high 
secretion pressure, all of the tube is used for secretion, and a nonlinear pressure 
profile results. Numerical solutions are obtained for the pressure and rate of 
efflux. When the secretion pressure parameter falls below a certain critical value, 
the upper end of the tube begins to be choked off, only part of the tube being used 
for secretion. This phenomenon does not occur for exponents greater than or 
equal to unity. Physiological implications are considered, and a qualitative 
discussion given for the case of non-power-law fluids. 

1. Introduction 
In  a recent paper (Heike & Fitz-Gerald 1974), the problem of reduction of the 

pancreatic secretion rate by an increase in the viscosity of duodenal aspirate (the 
secreted fluid) was considered. The model involved secretion (by filtration under 
external pressure) of a power-law fluid into a long tube, closed a t  one end, with 
subsequent ejection from the open end under the action of a pressure gradient set 
up by the secretion pressure; inertial forces were ignored. The purpose there was 
to gain qualitative information about the effect of a viscosity increase on the 
flow rate under pathological conditions, to assist in the use of viscosity measure- 
ments as a diagnostic tool. Relationships between the viscosity and flow rate were 
derived, within ranges of the physical and physiological parameters appropriate 
to the pancreas. 

Further analysis shows that the phenomenon of secretion flow is more complex 
than was a t  h s t  thought. In  view of the possible application to a large number 
of secretion processes in biology, and the not inconsiderable fluid dynamic 
interest, this paper discusses the problem in some detail. A range of power-law 
fluids is considered, rather than the square-root-law fluid assumed for pancreatic 
secretion; further, solutions are obtained for an extensive range of the non- 
dimensional parameter G which governs the viscosity-flux relation. G is essen- 
tially the ratio of the secretion pressure available and a typical viscous force. 
Several interesting features emerge. 

For large values of G, the pressure is virtually equal to the downstream 
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FIGURE 1.  Dimensions and co-ordinates for the model secreting duct. 

reference value everywhere, and the efflux tends asymptotically to a maximum 
value. As G decreases, the upstream pressure gradually increases, tending to its 
limiting value (the secretion pressure), while the efflux decreases. For fluids 
whose viscosity decreases with increasing shear (' hypo-Newtonian ' or pseudo- 
plastic), this maximum upstream pressure is reached for a non-zero value of G. 
When G falls below the cut-off point, the flow becomes progressively choked off 
from the upstream end; the effective length of the tube, in which secretion 
actually occurs, is reduced, with the upstream portion remaining at the secretion 
pressure and providing no contribution to the efflux. I n  this range of G ,  which 
extends down to zero, the efflux decreases linearly with G. 

This choking effect does not occur with fluids whose viscosity increases with 
increasing shear (hyper-Newtonian or dilatant). The upstream pressure tends to 
its maximum value as G tends to zero, with a corresponding smooth decrease in 
efflux. 

2. The mathematical model 
As in the previous paper, we consider secretion into a circular tube of length 1 

and radius a, under a secretion pressure ps ;  the pressure a t  the open end is taken 
to be the (zero) reference level. The filtration coefficient is a, i.e. the secretion 
rate q per unit area is a(p ,  - p ) ,  where p is the pressure a t  any point just inside 
the tube. 

Modelling a gland such as the pancreas by a single tube will of necessity lead 
to a greatly reduced surface area available for secretion, since the successively 
branched tubules are being ignored for the hydrodynamic discussion. This may 
be compensated for, however, by using an enhanced filtration coefficient a. 
Further, it is probable that a: will depend on the fluid viscosity; it will, however, 
be constant for a given fluid. Effects due to a viscosity-dependent a will be con- 
sidered later in the paper. Cylindrical co-ordinates are used, with the origin 
centred at the closed end (see figure 1). 

To facilitate the analysis, we assume that the flow is quasi-parallel almost 
everywhere. This effectively requires the secretion rate at any point to be much 
smaller than the total flux there. The validity of this approximation depends on 
the solution of the mathematical model; we show a posteriori that excellent 
accuracy is guaranteed for sufficiently long tubes. As in lubrication theory, this 
ensures that inertial forces are negligible; we may therefore neglect, the convective 
terms even though a modified Reynolds number is not necessarily small. Further, 
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the only non-negligible shear component will be r,,, the axial drag due to radial 
velocity variation. I n  this model, we consider a power-law fluid, so that 

r,, = -KlaulaYp; (1) 

in a later section, however, the results obtained will be shown to be qualitatively 
applicable to a wide range of non-Newtonian fluids. Treatments of simple axial 
flow of a power-law fluid in a pipe under a constant pressure gradient have 
appeared previously (e.g. Metzner & Reed 1955; Bird 1956), with the aim of 
quantifying an effective Reynolds number, usually via the Fanning friction factor. 
The early part of the present analysis is similar in spirit to these discussions; 
however, it seems preferable to develop the theory here from first principles, in 
view of the considerable differences introduced by the driving secretion pressure. 

The equation of conservation of momentum for steady flow may be written, in 
the usual notation, as u.  vu +p-lVp = p-1v .7. 

Non-dimensional variables are introduced to facilitate the analysis. A scale 
velocity is required; this will be taken as the mean exit velocity q, which would 
be produced were the whole tube wall area (excluding the closed end) secreting 
under the maximum available pressure ps.  Since the secretion rate q per unit 
area is a(ps -p ) ,  where p is the pressure at any point just inside the wall, U, may 
easily be shown to be given by 

Us = 21aps/a. (3) 
We may now define 

r* = r/a,  2% = zla, 

and drop the asterisks for convenience; unless otherwise stated, non-dimensional 
quantities will be used from now on. 

Equation (2) now becomes 
Bu.Vu+GVp = V . 7 ,  

where 

F is the parameter corresponding to a Reynolds number in Newtonian flow; 
while we may expect F to be small for some secretion processes, we shall see later 
that in the pancreas F normally takes values of the order of 10. G expresses the 
relative magnitude of a typical secretion pressure force and viscous force, and is 
the principal controlling parameter for the flow. I n  pancreatic secretion, G 
normally takes values of the order of lo5. 

As mentioned above, we now make the parallel-flow approximation, expecting 
the local secretion velocity (radial) to be much less than the mean axial velocity. 
Also, axial variations in u will be small compared with radial gradients. We are, 
in fact, assuming 

au av av au 
az2ar)az ar9 
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and that the convective terms are negligible. Essentially this is the lubrication 
assumption, implying that secretion will affect conservation of mass only, with 
a negligible effect on local momentum balance. This implies that p is a function of 
z only, and (5) may now be written as 

the minus sign occurring since aular will be everywhere negative (or zero, on the 
axis). Equation (8) may be integrated twice with respect to r ,  using the no-slip 
condition, and we obtain 

where 6 = ( 1  +y) /y .  Equation (9) gives the local velocity profile in terms of the 
local pressure gradient. As in lubrication theory, the pressure gradient is now 
determined by a continuity equation involving the total flux past any tube 
cross-section. 

At any z, this flux is given by 

Q =I1 2mzc(r)dr = 
0 

This must be equal to the total amount of fluid secreted per unit time through 
that part of the wall upstream of the chosen z :  

Equations (10 )  and (1 I) now give the continuity equation in the form 

1 G d p  - [ + 2  ( 2 I & I)" = $ / : ( l - p ) d z .  

This is essentially a second-order nonlinear integro-differential equation for p .  
Since dpldz is everywhere negative, we may set P(z) = I - p ,  and (12) becomes 

where 

Two boundary conditions are required for P. Clearly, since the open end of the 
tube is exposed to the reference pressure, p = 0 a t  x = L, i.e. P = 1 there. Further, 
(13) shows that dP/dz  = 0 a t  z = 0. We therefore specify 

P(L) = I, P'(0) = 0. 

One differentiation of (13) gives 
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and using the substitution 

f16) now becomes 
8 = p’2 
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(17) 

which is separable. In  fact we find 

where P = P(0) (19) 

may lie in the range 0 < P < I and is to be determined using (15a). Writing (18) 
in the form 

we may now integrate directly to obtain 

with 

where P is determined from 
4 = In {[P + (P2 - P2)w3} ,  

with II. = ln{P + (1 -P2)41/P). 
The outflow QE from the tube may now easily be obtained from (10) and (20): 

This completes the required solution. Efflux and pressure profiles may now be 
obtained for a range of values of G and y numerically. In  limiting cases, however, 
asymptotic forms are available. 

3. Solution for large G 
When G is large, and viscous forces are thus relatively small, we expect the 

solution to tend to the limiting case P = 1 ( p  = 0)  everywhere. This implies that 
P is very nearly unity and that QE is close to its maximum value 71. (Recall that 
the flux has been sealed with respect to the mean velocity occurring when 
secretion occurs everywhere at the maximum rate; the maximum dimensional 
flux is therefore nu2&.) We therefore set P = 1 - E ,  E < I, in (22 ) ;  

ln{P - (1 -P”*I/P} ( 2 4 4  

and in this range sinh 8 w 8. Equation ( 2 2 )  then becomes 
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and this reduces to 
B N 1 - 2 L ( f +  2)7/G( 1 + y) ,  QE - 7 ~ .  (24) 

It will be of interest in the later discussion on physiological implications to 
know how QE decreases with decreasing G .  Asymptotic analysis to the next order 
of accuracy gives, after some tedious but straightforward manipulation, 

and 
((+ 2)Y ( 8  + y +  3y2)  2 L  

Q E f f 7 T [ 1 -  3 ( 1 + y ) ( 2 + y )  -1 G ‘ 

4. Solution for minimum G 
I n  the previous asymptotic analysis, y could take any positive value. Now, 

however, the form of the ‘small G’ solution depends on the value of y ;  for y < 1, 
the integral in ( 2 2 )  is dominated by the behaviour near the upper limit as p -+ 0, 
while this is not so for y > 1. We now consider the y < 1 case separately. 

As G decreases, we expect p to decrease towards the limiting value zero 
(P(0)  -+ 0, i.e.p(O) + 1). This suggestsestimating a solution of ( 2 2 )  asymptotically 
for p < 1. I n  this case, 

and as p -+ 0, the integral is dominated by the upper end, where 

sinh(l-y)/(l+y) 6 - ( i)(l-y)l(l+y) exp [( 1 - y )  6/( 1 + y) ] .  

1n([1+ (1 -P”)”I/P) --f In ( 2 / P ) ,  

Equation ( 2 2 )  then becomes 

and this reduces to  
&4l+Y) (1 + y)(l-y)Kl+y) 

2rl(l+r) (1 - y )  . L -  

This implies that the limiting value ,8 = O is achieved when 

and QE = n[+( 1 - 7) (1 +y)y’’+7)]; (26 )  

no solution in this form is available when G takes smaller values. We denote the 
corresponding pressure profile by P1im(z; y) .  

On the other hand, the integral in ( 2 2 )  converges for p --f 0 when y > 1, since 

give finite contributions near the limiting end points. Equation ( 2 2 )  becomes in 
sinh(l-y)/(l+y) 6 (&@)-(?‘-1)l(r+l) as /j + ~0 and - (j-(y-1)1(~+1) as 8 --f 0, both of which 

this case 

where 
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and clearly, since this implies that 

p -+ 0 as G + 0, and a solution of this form is available for all values of G. 

exactly; (16) becomes, in fact, 
p" - h-lp = 0, 

with solution P = cash (z/h&)/cosh (L/h*), 

satisfying the boundary conditions at z = 0 and L. Clearly, solutions are available 
for all values of G in this case also. 

Finally, we note that, when y = 1 (Newtonian fluid), (16) may be solved 

5. The choked-flow case 
We now consider the interesting case of a fluid with y < 1 whose viscosity is so 

high that G falls below Glim. The parameter p cannot be allowed to be negative, 
since this implies a pressure developed in the tube greater than the driving 
secretion pressure. However, we note that the 'trivial' solution P = 0 (i.e. p = 1) 
is also available for (16). Further, an acceptable solution in the previous form 
exists for a smaller effective value of L, say L', where 

2 ~ - 1 ( 1 +  y)l-y G L' = 
(1 - y ) l + y  (6 + 2 ) Y  , 

from (25).  The solution we require, then, is 

(0 6 z < L-L') ,  

(" 91m(z-L+L' ,  y )  (L-L' < z 6 L) .  
P(z) = 

We need only note that this is sufficiently continuous in the whole range to be an 
acceptable solution of (16).  

Physically, this represents a situation where no secretion occurs in the region 
0 < z 6 L - L', since no pressure difference exists across the wall. The upper part 
of the tube is effectively 'choked off' by the decreasing value of G (secretion 
pressure too small or viscous stresses too great). The non-dimensional flux QE 

remains a t  the value given by (26 )  for G 6 Glim, since G/2L' will remain a t  its 
largest available value, given by (25) .  However, since the scale factor for the 
volume flux is n-a2U, = 27ra2Lap8, a decrease in the effective L results in a corre- 
sponding linear reduction in the physical volume outflow. 

6. Numerical results 
For given values of 0, numerical quadrature techniques provide solutions for p, 

QE and p .  Figure 2 shows some typical pressure profiles; figure 3 shows the 
dependence of the non-dimensional outflow QE on G for a range of values of y. 
The transition from whole-tube to choked flow is demonstrated for y = 0.5 and 
y = 0.3333..  . ; no corresponding change occurs for y 1. 
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FIGURE 2. Typical pressure profiles in the duct, for L = 100 (in non-dimensionel 
form). -, y = 0.5; ---, y = +; ---, = 1.0. 
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FIGURE 3. Non-dimensional efflux QE V.S. secretion parameter G.  - - -, choked-flow 
continuation for y < 1 cwves. Values of y are shown on the figure. 
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7. Validity of the parallel-flow assumption 
Essentially, this assumption requires that the rate of entry of fluid through the 

walls per unit length of tube be small compared with the total flux at  any point. 
The rate of entry per unit length in non-dimensional terms is simply 

27rq = nL-l(l -p) ,  

while the total flux Q is n[&G Idp/dz1]1/y/(g+ 2 ) ,  from (10). With P = 1 -p ,  and 
making use of (19) to evaluate Q,  we find that the ratio of the rate of entry to the 
flux, E say, is given by 

nL-1P 

7r ( G )  lh [ 1 + y (p 
E =  )] W+l) * - 2- 2 

F 2  2 2h 

Substitution for h now gives 

the most convenient form. 

large G, both P and /? are nearly unity; in this case 
Estimates of E may be given for both large and small G as limiting cases. For 

P 1 
(P2 - /?2)1/(l+Y) - 21/(1+Y) (p - p ) l / a + Y ) ’  

and we find that 

Thus E will certainly be small provided that 

and from (24), we find that the maximum value of P-/? (at z = L)  is 

certainly very small for sufficiently large 0. Then (28) becomes 

P - p  $ L-(l+y)(P-/3)max. 

For suitably large L (length-to-radius ratio), therefore, E will be very small 
except in a small region near the closed end. For example, for L = 100 and y = + 
(typical values for pancreatic secretion), E is small, say < 0.1, whenever P-/? 
is greater than about 0.03 of its maximum value. 

When G is small, i.e. /? - 0, (27) becomes 
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If y < 1, this occurs a t  the limiting value 

and now 

E will be sufficiently small to justify the parallel-flow assumption provided 
again that L is suitably large; and the larger the value of L, the greater the 
region of the flow in which the assumption is valid, recalling that P takes a 
maximum value of 1. 

On the other hand, when y > 1 the right-hand side of (29) will be small 
provided that 

and once again, for large L, only very small values of G give rise to a flow in which 
the parallel-flow assumption is not valid. 

8. Other non-Newtonian fluids 

character can be 'bounded' by two power-law expressions: 

7 = -Kf(Iau/arI), 
where axv < f (x) < bxp, say (a  and b constants). Further, suppose that v and ,u are 
both either greater or less than unity; i.e. the fluid is either 'hyper-Newtonian' or 
'hypo-Newtonian' always. Let h(x) be the inverse function off, i.e. 

Consider a fluid which does not have power-law behaviour, but whose viscosity 

2 = h(f (4). 
Then h will also be bounded by powers of x, both either greater or less than unity; 
but if the exponents for f are less than unity, those for hare greater, and vice versa. 

If we consider the analysis which produces the dichotomy of behaviour for 
hyper-Newtonian and hypo-Newtonian power-law fluids, we see that the distinc- 
tion may be drawn from (16); if (1 - y) /y  is positive, then when the integration 
yielding (1 8) is performed, we find 2y/( 1 + y )  > 1) leading to the infinite integral 
in (22 )  as p --f 0, and the limiting value for G .  Now consider the fluid described 
above. A derivation of the equation for the pressure gradient exactly analogous 
to the previous one yields an equation analogous to (16) : 

Now)ifm(Z P')"' < h(f P') < n(z P')''") thenthesameistrueoftheexpression 

in square brackets above. Hence, for a hypo-Newtonian fluid, (30) will be bounded 
by equations of the form 

and 
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where (I -,u)/,u and (1 - v ) / v  are both positive. The resulting solution will there- 
fore have the choked-flow character found earlier. A similar argument holds for 
the hyper-Newtonian case. 

9. Physiological implications 
For the pancreas, K is normally about 0.02 cm2/s, y is about 0.5, L of the order 

of 100, and G is of the order of lo5; the exact value is uncertain because of 
difficulties in estimating a. However, we can still estimate the effect of an increase 
in viscosity under pathological conditions. Using the large G approximation, 
we find from (24a)  that QE is virtually constant for a considerable range of G. 
With the values given, (24a)  becomes 

Q E  N ~ [ l -  37O/G], 

SO that even an extreme reduction in C: by a factor of I00 causes a reduction in 
the non-dimensional efflux of the order of 30 yo. As pointed out by Heike (1973)) 
considerable reductions in efflux certainly occur in fibrocystic patients, so that 
some effect not reproduced by the current model must be responsible; the model 
does not provide sufficient information to allow viscometry to be used as a 
convenient diagnostic tool. 

We expect that a reduction in a will occur if there is an increase in viscosity; 
typically acc p-1 for Newtonian fluids in filters such as porous bronze. It is not 
clear in the pseudoplastic situation what the appropriate viscosity coefficient is; 
presumably large shear rates occur in the pores of the endothelium of the ductules, 
and some form of limiting high-shear viscosity coefficient will govern the filtration 
rate. 

Other possible geometric factors influencing the physical outflow rate are 
discussed in the previous paper (Heike & Fitz-Gerald 1974); inclusion of these in 
the model would be necessary before their effects could be assessed. While values 
of G seem too large for the choking effect to occur in the pancreas, it is possible 
that local reductions in secretion pressure, perhaps combined with the very small 
radii for tlhe finest ductules, may well lead to a reduction in efficiency as parts of 
the gland are rendered inoperative as progressive choking occurs. 
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